Transparent cellulose/aramid nanofibers films with improved mechanical and ultraviolet shielding performance from waste cotton textiles by in-situ fabrication

Cellulose films with biodegradability and intrinsically antistatic property have many applications. However, conventional cellulose films show poor toughness and UV-shielding property, and the major sources are high-grade cotton linter or wood pulp. Herein, by using low-cost waste cotton textiles as the raw materials, we successfully fabricated transparent cellulose/aramid nanofibers (ANFs) films, in which in-situ retained ANFs had a diameter of 20–30 nm and a length of several micrometers. Because ANFs and cellulose chains formed strong hydrogen bonding interactions, the tensile strength and elongation of the resultant cellulose/ANFs film with 1.0 wt% ANFs could reach 54.4 MPa and 15.8%, respectively, increased by 63.4% and 154% compared to those of pure cellulose film (33.3 MPa and 6.2%). Meanwhile, the cellulose/ANFs films show excellent UV-shielding properties and irradiation stability. Hence, the novel cellulose/ANFs films with improved mechanical and UV-shielding performance were in-situ prepared leading to enhance the valorization of waste cotton textiles.

» Author: Guangmei Xia, Qiwen Zhou, Zhen Xu, Jinming Zhang, Jun Zhang, Jie Wang, Jiuhao You, Yuanhang Wang, Haq Nawaz

» More Information

« Go to Technological Watch




This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº 737882.


            

Contact

València Parc Tecnológic - Gustave Eiffel, 4 - 46980 Paterna - Valencia, SPAIN
+34 96 136 60 40 - fibfab@aimplas.es